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ABSTRACT
Software systems often suffer from various kinds of perfor-
mance inefficiencies resulting from data structure choice,
lack of design for performance, and ineffective compiler op-
timization. Avoiding unnecessary operations, and in partic-
ular memory accesses, is desirable. In this paper, we de-
scribe DeadSpy — a tool that dynamically detects every
dead write to memory in a given execution and provides ac-
tionable feedback to the programmer. This tool provides
a methodical way to identify dead writes, which is a com-
mon symptom of performance inefficiencies. Our analysis of
the SPEC CPU2006 benchmarks showed that the fraction
of dead writes is surprisingly high. In fact, we observed that
the SPEC CPU2006 gcc benchmark has 61% dead writes
on average across its reference inputs. DeadSpy pinpoints
source lines contributing to such inefficiencies. In several
case studies with high dead writes, simple code restructuring
to eliminate dead writes improved their performance signif-
icantly. For gcc, avoiding dead writes improved its running
time by as much as 28% for some inputs and 14% on aver-
age. We recommend dead write elimination as an important
step in performance tuning.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques,
Performance attributes.

General Terms
Performance, Measurement, Algorithms

Keywords
Dead write detection, code inefficiency

1. INTRODUCTION
Software systems often suffer from various kinds of perfor-
mance inefficiencies. Some inefficiencies are induced by pro-
grammers during design (e.g., poor data structure selection)

and implementation (e.g., use of generic, heavy-weight pro-
gramming abstractions). Sometimes performance losses are
compiler induced, e.g., not inlining hot functions or moving
less frequently executed code to hot regions. Software that
remain in constant development tends to accumulate sev-
eral such inefficiencies over time. Identifying inefficiencies
in programs and eliminating them is important not only for
commercial developers, but also for scientists writing com-
putation intensive codes for simulation, analysis, or model-
ing. Performance analysis tools, such as gprof [12], HPC-
Toolkit [1], Xperf [22], and vTune [16], attribute running
time of a program to code structures at various granularities.
However, such tools are incapable of identifying whether a
program’s execution time is well spent.

On modern architectures, memory accesses are costly. For
many programs, exposed memory latency accounts for a sig-
nificant fraction of execution time. Unnecessary memory ac-
cesses, whether cache hits or misses, lead to poor resource
utilization and have a high energy cost as well [14]. In the
era where processor to memory gap is widening [17, 21], gra-
tuitous accesses to memory are a cause of inefficiency, more
so if they happen on hot paths.

A dead write occurs when there are two successive writes to
a memory location without an intervening read. Dead writes
are useless operations. Performance analysis tools men-
tioned above lack the ability to detect inefficiencies related
to dead writes. Compiler optimizations that reduce memory
accesses by register allocation of scalars (e.g., [8]) or array
elements (e.g., [7]) are critical to high performance. Other
optimizations that eliminate redundant computations [19,
5, 9] are similarly important. However, none of these opti-
mizations are effective at global elimination of dead writes.
Analysis of dead writes is complicated by issues including
aliasing, aggregate types, function boundaries, late binding,
and partial deadness.

As we show in Section 4, dead writes are surprisingly fre-
quent in complex programs. To pinpoint dead writes, we
developed DeadSpy—a tool that monitors every memory
access, identifies dead writes, and provides actionable feed-
back to guide application tuning. Using DeadSpy to ana-
lyze the reference executions of the SPEC CPU2006 bench-
marks showed that the integer benchmarks had over 20%
dead writes and the floating point benchmarks had over 9%
dead writes. On some inputs, the SPEC CPU2006 403.gcc

benchmark had as many as 76% dead writes.



In addition to providing a quantitative metric of dead writes,
DeadSpy reports source lines and complete calling con-
texts involved in high frequency dead writes. Such quantita-
tive attribution pinpoints opportunities where source code
changes could significantly improve program efficiency. Var-
ious causes of inefficiency manifest themselves as dead writes
at runtime. We show cases where lack of or inefficient com-
piler optimizations cause dead writes; we also highlight cases
where programmer did not design for performance. We re-
structure codes that have significant fractions of dead writes
and demonstrate performance improvements. To the best of
our knowledge, DeadSpy is the first dynamic dead write de-
tection tool. The proposed methodology of eliminating dead
writes is a low-cost high-yield strategy when looking for op-
portunities to improve application performance.

This paper makes the following contributions:

• We identify dead writes as a symptom of inefficiency,
which arise from many causes.

• We propose elimination of dead writes as an opportu-
nity for improving performance.

• We built a tool to count dead writes in an execution
and precisely attribute these counts to source lines.

• We analyzed a variety of benchmark programs and
show that the fraction of dead writes in SPEC
CPU2006 is surprisingly high.

• We identify several cases where dead writes result from
ineffective compiler optimization.

• In case studies, we demonstrate that eliminating
causes of dead writes significantly improves perfor-
mance.

The rest of the paper is organized as follows. Section 2
presents a new methodology for detecting program ineffi-
ciencies via tracking dead writes. Section 3 sketches the
design and implementation of DeadSpy. Section 4 evalu-
ates benchmark programs using DeadSpy. Section 5 stud-
ies four codes to explore the causes of dead writes and the
performance benefits of dead write elimination. Section 6
describes related work. Finally, Section 7 summarizes our
conclusions.

2. METHODOLOGY
In this section we describe a dynamic dead write detection
algorithm. The driving principle behind our tool is the in-
variant that two writes to the same memory location without
an intervening read operation make the first write to that
memory location dead.

To identify dead writes throughout an execution, we mon-
itor every memory read and write operation issued during
program execution. For each addressable unit of memory
M, accessed by the program, we assign a state — STATE(M)

as either Read (R) or Written (W) indicating whether the
last operation on M was a read or a write respectively. The
state transitions of each memory location obey the automa-
ton shown in Figure 1, where the transition edges are labeled
with <instruction/action> pairs. Every memory location
starts in a Virgin(V) state. An instruction that reads M up-
dates STATE(M) to R. An instruction that writes M updates

Figure 1: State transition diagram.

STATE(M) to W. A state transition from W to W corresponds
to a dead write. When a dead write is detected, informa-
tion is recorded for later reporting. Similarly, a final write
to M without a subsequent read qualifies as a dead write.
All other state transitions have no actions associated with
them. A halt instruction transitions the automaton to the
terminating state. For a terminating program, our technique
guarantees termination. Since the automaton considers the
effect of each memory operation executed in the program
from start to finish, there can be no false-positives or false-
negatives. The approach is sound even in the event of asyn-
chronous control transfers.

For multi-threaded programs, if two consecutive writes to a
location, without an intervening read, are from two different
threads, this may indicate a source of non-determinism or a
data race. In this work, our focus is to identify program inef-
ficiencies for a single thread of execution; for multi-threaded
executions, we treat such writes to a memory location simply
as dead writes.

3. DESIGN AND IMPLEMENTATION
We have implemented DeadSpy using Intel’s cross platform
dynamic binary instrumentation tool Pin [20] to monitor ev-
ery read and write operation. We use shadow memory [23]
to remember the state of each memory location. We instru-
ment each function’s CALL and RETURN instructions to build
a dynamic calling context tree (CCT) [2] and record the pro-
gram contexts involved in dead writes. Each interior node
in our CCT represents a function invocation; and each leaf
node represents a write instruction. We apportion deadness
to pairs of CCT contexts that are involved in dead writes
and present them to the user at program termination. In
our implementation, we decided not to include a scan at
program termination to recognize each final W → End tran-
sition as dead; its contribution to overhead is negligible and
in practice it may be infeasible to eliminate.

In the following subsections, we first introduce terminology
used in the rest of the paper and briefly describe Pin. Then,
we describe our implementation of DeadSpy, including its
use of shadow memory and CCT construction, along with its
strategies for recording and reporting dead writes. Next, we
present the challenges involved in attributing dead writes to
source lines and then we sketch the details of our solution.
We conclude this section with the details of accounting and
attributing deadness.

3.1 Terminology
In the context of this paper, we define the following terms:

• Read is an instruction that has the side effect of loading
a value from memory.



• Write is an instruction that has the side effect of stor-
ing a value into memory.

• Operation represents a dynamic instance of an instruc-
tion.

For a W → W state transition at location M, we define:

• Dead context as the program context in which the first
write happened; this context wrote an unread value
and hence is a candidate for optimization.

• Killing context as the program context which over-
wrote the previously written location without an in-
tervening read of the location.

3.2 Introduction to Pin
Pin is a dynamic binary instrumentation tool which provides
a rich set of high-level APIs to instrument a program with
analysis routines at different granularities including module,
function, trace, basic block and instruction. A trace in Pin
jargon, is a single entry multiple exit code sequence — for
example, a branch starts a new trace at the target, and a
function call, return, or a jump ends the trace. Instrumenta-
tion occurs immediately before a code sequence is executed
for the first time. Using Pin, we instrument every read and
write instruction to update the state of each byte of mem-
ory affected by the operation. Pin also provides APIs to
intercept system calls, which we use to update the shadow
memory to account for side effects of system calls.

3.3 Maintaining memory state information
In our implementation, we maintain the current state of
each memory location in a shadow memory, analogous to
Memcheck, a Valgrind tool [23]. Each memory byte M has a
shadow byte to hold its current state STATE(M). The shadow
byte of M can be accessed by using M’s address to index a two-
level page table. We create chunks of 64KB shadow memory
pages on demand. On 64-bit Linux machines, only the lower
48 bits are used in user address space. With 64KB shadow
pages, the lower 16 bits of address provide an offset into a
shadow page where the memory status is stored. The higher
20 bits of 48 bits, provide an offset into the first-level page
table which holds 220 entries — on a 64-bit machine it oc-
cupies 8MB space. The middle 12 bits provide an offset into
a second-level page table. Each second-level page table has
212 entries and occupies 32KB on a 64-bit machine. Each
second-level page table is allocated on demand iff an address
is accessed in its range. We adopt copy-on-write semantics
so that read-only pages do not get shadowed. To maintain
the context for a write operation, we store an additional
pointer sized variable CONTEXT(M) in the shadow memory
for each memory byte M. Thus, we have one shadow byte of
state and an 8-byte context pointer for a total of nine bytes
of metadata per data byte. Figure 2 shows the organization
of shadow memory; numbers in dark circles represent the
steps involved in address translation.

3.4 Maintaining context information
To accurately report the dead context and the killing context
involved in every dead write, each instruction writing to lo-
cation M also updates STATE(M) and records the information
needed to recover the calling context and the instruction

Figure 2: Shadow memory and address translation.

pointer (IP) of the write. We accomplish this by maintain-
ing a CCT which dynamically grows as the execution un-
folds. In this subsection, we provide the details of building
a simple CCT; the details of including the IP information
to map back to source lines are presented in Section 3.7. To
build a simple CCT, we insert instrumentation before each
CALL and RETURN machine instruction. We maintain a glob-
ally accessible pointer curCtxtNodePtr to a CCT node that
represents the current function; the path from that node
to the CCT root represents the call stack. Each CALL in-
struction creates a new ContextNode for the callee under
curCtxtNodePtr if not already present, and sets curCtxtN-

odePtr to the callee CCT node. Each RETURN instruction
sets the curCtxtNodePtr to its parent CCT node. The Pin
analysis routine executed just before each write instruction
updates the pointer-sized variable CONTEXT(M) in the shadow
memory for each of the data bytes written with the location
pointed to by curCtxtNodePtr. For multithreaded codes,
there will be one CCT per thread; a spin lock ensures that
the instruction and the corresponding analysis routine run
atomically.

3.5 Recording dead writes
When a W → W state transition is detected, we record a
3-tuple <dead context pointer, killing context pointer, fre-
quency> into a table (DeadTable), where each entry is
uniquely identified by <dead context pointer, killing con-
text pointer> ordered pair. For example, <CONTEXT(M),

curCtxtNodePtr,1> is the 3-tuple when a dead write is ob-
served for location M. If such a record is already present, its
frequency is incremented. The frequency accumulates the
number of bytes dead for a given pair of contexts. We dis-
cuss the details of assessing and attributing dead writes in
Section 3.8.

3.6 Reporting dead and killing contexts
At program termination, all 3-tuples are retrieved from
the DeadTable, and sorted by decreasing frequency of each
record. For each tuple, the full call chain representing its
dead context is obtained by traversing parent links in the
CCT starting from the dead context pointer1. Similarly, we

1For library calls where the target of a call is to a trampoline,
we disassemble target address of the jump to extract the
correct function name.



Figure 3: Calling context tree.

can retrieve the killing context by traversing parent links in
the CCT starting from the killing context pointer.

3.7 Attributing to source lines
Sometimes having only a chain of function names as a con-
text may not suffice; source line numbers involved in the
dead and killing writes may be needed. Tracking this infor-
mation requires recording the IP in addition to the enclosing
function for each write operation. Naively recording addi-
tional pointer sized IP values bloats shadow memory and
adds excessive overhead. We provide a solution which avoids
both. One could consider adding write IPs as leaf nodes in
the CCT; these nodes would represent writes within a par-
ent function. However, every time a write operation is ex-
ecuted, recording the context would involve looking up the
corresponding CCT node for the write IP; this would inflate
the cost of monitoring dramatically. Instead, one could con-
sider representing the set of write instructions in a function
as an array and assigning a slot index to each. Using Pin,
one can assign a unique slot index to each write instruction
during JIT translation; with this approach, the slot index
for each write instruction is available to an analysis routine
during execution in constant time.

Pin makes information about function boundaries available
to instrumentation at run time. This information could be
used to scan each function and assign a slot index to each
write instruction. A problem with this approach is that it
requires precise knowledge of function boundaries. In prac-
tice, program disassembly is imprecise [26] and discovering
function boundaries relies upon compiler-generated symbol
information, which is often incomplete and sometimes incor-
rect [29]. The approach of associating write instructions in
a function with slots would fail when execution transfers to
an arbitrary code region where precise function bounds are
unavailable. This is not uncommon; even the startup code
executed before reaching the main() function exercises such

corner cases.

Providing a perfect solution to track IPs of write operations
involves complex engineering of the CCT. To facilitate this,
we developed a strategy that makes use of traces that Pin
generates at JIT time. While the function bounds can be in-
correct, the instructions identified in a trace are always cor-
rect since trace extraction happens at runtime. We modify
the aforementioned simple CCT such that each ContextNode

has several child traces (ChildTraces), each one represented
by a TraceNode. Each TraceNode has an array of child IPs
(ChildWriteIPs) where each array element corresponds to
a write instruction under that trace, as shown in Figure 3.

We use Pin to instrument each trace entry. We also use
Pin to add instrumentation before each CALL instruction to
set a flag. On entering a trace, if the flag is set, we know
that we have just entered a new function. If the flag is set
when entering a trace, we inspect the children of the current
CCT node curCtxtNodePtr looking for a child ContextN-

ode representing the current IP; if none exists, we create
and insert one. We update curCtxtNodePtr to the appro-
priate child and reset the flag. Whether the flag was set
or not, we next lookup a child TraceNode under curCtxtN-

odePtr (creating and inserting a new one if necessary), and
set curTraceNodePtr to point to the current trace. Tail calls
to known functions are handled by having Pin instrument
function prologues to adjust curCtxtNodePtr to point to a
sibling node, and then adjust curTraceNodePtr. A tail call
to an instruction sequence not known to be a function ends
up being associated with a trace under the current function.

Using the aforementioned CCT structure, let’s consider
how we maintain the shadow information for a write
operation. If a write instruction Wi is numbered as
the 42nd write while JIT-ing a trace T; then exe-
cuting Wi, which writes to location M, would update
CONTEXT(M) with &curTraceNodePtr->ChildWriteIPs[42].
If an instance of Wi is a killing write, we record
or update the 3-tuple <CONTEXT(M), &curTraceNodePtr-

>ChildWriteIPs[42], frequency> in its DeadTable.

To report dead and killing contexts with source line infor-
mation, we maintain a map that enables us to recover the
IP of each write instruction in a trace. To recover the IP of
a write instruction in a trace, we use the address of the first
instruction in the trace, StartAddr, as the key in a map that
yields an array; this array maps the slot index of each write
instruction in a trace to its corresponding IP. That, com-
bined with the call chain implied by the path through the
CCT from a TraceNode to the root, identifies the complete
calling context.

3.8 Assessing deadness
Read and write operations happen at different byte-level
granularities, for example 1, 2, 4, 8, 16, etc.. We define
AverageWriteSize in an execution as the ratio of the to-
tal number of bytes written to the total number of write
operations performed.

AverageWriteSize =
NumBytesWritten

NumWriteOps



Figure 4: Deadness in SPEC CPU2006-INT.

We approximate the number of dead write operations in an
execution as the ratio of the total number of bytes dead to
its AverageWriteSize.

̂NumDeadOps =
NumBytesDead

AverageWriteSize

We define Deadness in an execution as the percentage of
the total dead write operations out of the total write op-
erations performed, which is same as the percentage of the
total number of bytes dead out of the total number of bytes
written.

Deadness =
̂NumDeadOps

NumWriteOps
× 100

=
NumBytesDead

NumBytesWritten
× 100

DeadSpy accumulates the total bytes written and the total
operations performed in an execution. As stated in Sec-
tion 3.5, each record Cij in a DeadTable is associated with
a frequency F (Cij), representing the total bytes dead in a
dead context i due to a killing context j. We compute total
Deadness as:

Deadness =

∑
i

∑
j

F (Cij)

NumBytesWritten
× 100

We apportion Deadness among contributing pair of contexts
Cpq as:

Deadness(Cpq) =
F (Cpq)∑

i

∑
j

F (Cij)
× 100

An alternative metric to Deadness is Killness — the ratio
of the total write operations killing previously written values
to the total write operations in an execution. In practice, we
found that both Deadness and Killness values for programs
are almost the same.

4. ANALYSIS OF BENCHMARKS
Experimental setup. For our experiments, we used a
quad-socket system with four AMD Opteron 6168 processors
clocked at 1.9 GHz with 128GB of 1333MHz DDR3 running
CentOS 5.5. We used the GNU 4.1.2 [11] compiler tool chain
with -O2 optimization.

4.1 SPEC benchmarks
Deadness in SPEC CPU2006. We measured the dead-
ness of each of the SPEC CPU2006 integer and floating point
reference benchmarks; and the results are shown in Figures 4

Figure 5: Deadness in SPEC CPU2006-FP.

Figure 6: DeadSpy overhead for SPEC CPU2006-
INT.

and 5 respectively. Several benchmarks execute multiple
times, each time with a different input; each column in Fig-
ures 4 and 5 shows the measurements averaged over different
inputs for the same benchmark. For a benchmark with mul-
tiple inputs, error bars represent the lowest and the highest
deadness observed on its different inputs. Average deadness
for integer benchmarks is 20.1% with the highest of 76.2%
for gcc on the input c-typeck.i, and the lowest of 3.2% for
astar on the input rivers.cfg. Average deadness for float-
ing point benchmarks is 9.2% with the highest of 33.9% for
soplex on the input pds-50.mps, and the lowest of 0.3% for
lbm. Average difference between Killness and Deadness
is 2.3% for integer benchmarks and 0.5% for floating point
benchmarks.

These measurements indicate that for several of these codes,
large fractions of memory access operations are dead. In
many cases, just a few pairs of contexts account for most of
dead writes. For example, in the SPEC CPU2006 integer
reference benchmarks, for the benchmark/input pair with
the median deadness, its top five context pairs account for
90% of deadness, and its top 15 context pairs account for
95% of deadness. This indicates that a domain expert could
optimize a handful of context pairs presented by DeadSpy
and expect to eliminate most dead writes in a program.

Overhead of instrumentation. As a tool that monitors
every read and write operation in a program, quite natu-
rally, DeadSpy significantly increases execution time. Fig-
ure 6 shows the overhead of each of SPEC CPU2006 inte-
ger reference benchmarks. The overhead to obtain dead and
killing contexts without line numbers is much less than when
line number information is tracked as well. To track line
numbers, we need to instrument each trace entry. The av-



Program
Deadness in %

Intel 11.1 PGI 10.5 GNU 4.1.2
None Default Max None Default Max None Default Max

astar 2.3 8.4 5.0 5.2 1.1 5.7 2.5 3.3 7.7
bzip2 4.7 8.6 8.9 4.9 9.9 12.8 5.1 9.8 11.9
gcc 39.3 67.8 67.2 40.8 53.3 51.9 39.7 60.5 64.5
gobmk 15.7 21.3 22.7 17.4 19.1 20.7 16.0 19.2 20.1
h264ref 14.4 28.4 38.3 15.1 24.5 26.2 15.3 27.6 27.9
hmmer 31.3 68.7 68.8 31.5 67.6 67.9 0.3 14.0 29.4
perlbench 15.3 18.0 20.0 16.7 16.5 16.8 13.2 19.1 n/a
libquantum 1.7 6.0 0.3 2.8 7.1 7.5 2.3 6.0 6.1
mcf 16.6 49.4 49.5 17.2 27.6 47.2 17.3 39.3 47.3
omnetpp 4.8 19.4 22.1 11.8 11.2 27.7 4.7 19.7 21.4
sjeng 9.6 20.4 17.8 10.3 11.4 13.9 10.0 16.3 19.7
xalan 1.5 6.6 6.7 5.1 4.7 9.4 1.7 6.6 8.4
Average 13.1 26.9 27.3 14.9 21.2 25.6 10.7 20.1 24.0

Table 1: Deadness in SPEC CPU2006-INT with different compilers and optimization levels.

erage2 slowdowns due to instrumentation without and with
line information are 22.3x and 41.3x respectively. The maxi-
mum slowdown is seen for the h264ref benchmark on the in-
put foreman_ref_encoder_baseline.cfg with 41.3x with-
out line-level attribution and 83.6x with line numbers. High
deadness typically comes with high overhead due to the cost
of recording participant contexts on each instance of a dead
write.

Deadness across compilers and optimization levels.
We used -O2 optimization as the basis for our experiments
since it is often used in practice. However, our findings are
not limited to a specific optimization level or a specific com-
piler. We found high deadness across different optimization
levels and across different compilers. For completeness, we
present the deadness in SPEC CPU2006 integer reference
benchmarks when compiled without optimization, with de-
fault optimization, and with highest level of optimization
on three different compiler chains viz., Intel 11.1 [15], PGI
10.5 [30], and GNU 4.1.2 [11]. By reading the accompa-
nying compiler manual pages, we concluded that the de-
fault optimization level is -O2 on these three compilers; and
the highest optimization level for Intel 11.1 is -fast, for
PGI 10.5 is -fastsse, -Mipa=fast,inline, and for GNU

4.1.2 is -O3 -mtune=opteron. We did not conduct pro-
file guided optimizations in our experiments. The deadness
found across these compilers is shown in Table 1. The perl-

bench benchmark did not finish execution when compiled
with GNU 4.1.2 at the highest optimization, even without
DeadSpy attached; hence we do not have the results for the
same. It is evident that high deadness is pervasive across
compilers and across optimization levels. Quite intuitively,
higher optimization levels, except inter-procedural analysis,
offer no advantage in eliminating dead writes. Meticulous
readers may observe that typically, deadness increases with
increase in optimization levels on all compilers; this can be
attributed to the fact that with higher optimizations, the
absolute number of memory operations often reduces, but
the absolute number of dead writes does not reduce propor-
tionally.

4.2 OpenMP NAS parallel benchmarks
To assess the deadness in multithreaded applications, we
ran DeadSpy on the OpenMP suite of NAS parallel bench-

2As of this writing we do not have results for 445.gobmk due
to its large memory footprint.

Program
Deadness in %

Inter-thread (A) Intra-thread (B) Total (A+B)
bt.S 5.28E-02 1.13E+01 1.14E+01
cg.S 6.83E-03 2.86E+00 2.87E+00
dc.S 2.26E-03 1.78E+01 1.78E+01
ep.S 9.84E-02 1.68E-01 2.66E-01
ft.S 3.35E-01 4.17E+00 4.50E+00
is.S 1.08E+00 1.06E+00 2.13E+00
lu.S 1.89E-02 6.01E+00 6.03E+00
mg.S 4.44E-01 6.10E+00 6.55E+00
sp.S 2.68E-01 3.32E+00 3.59E+00
ua.S 1.04E-01 4.43E+00 4.54E+00
Average 2.40E-01 5.72E+00 5.96E+00

Table 2: Deadness in OpenMP NAS parallel bench-
marks.

marks version 3.3 [18] with four worker threads (i.e.,
OMP_NUM_THREADS=4). Table 2 shows the deadness found
in these benchmarks. The average deadness for these ap-
plications was 5.96%, which is less than those observed
for the SPEC CPU2006 serial codes. Moreover, the inter-
thread deadness, which happens when a previous write by
one thread is overwritten by a different thread, is negligible.
For multithreaded applications tuned to maintain affinity
between data and threads, there is little inter-thread dead-
ness.

5. CASE STUDIES
In this section, we evaluate the utility of DeadSpy for
pinpointing inefficiencies in executions of four codes: the
403.gcc and 456.hmmer programs from SPEC CPU2006
benchmarks, the bzip2 file compression tool [27], and a sci-
entific application Chombo [3]. We investigate dead writes in
executions of these applications and we apply optimizations
to eliminate some of the most frequent dead writes. We
present the performance gains achieved after code restruc-
turing. Unless stated otherwise, we use the aforementioned
experimental setup.

5.1 Case study 403.gcc
403.gcc was our top target for investigation since it showed
a very high percentage of dead writes. For the c-typeck.i

input which yielded 76% deadness, the top most pair of dead
contexts accounted for 29% of the deadness. The offending
code is shown in Listing 1. In this frequently-called function,
gcc does the following:

1. On line 3: allocates last_set as an array of 16937
elements, 8 bytes each, amounting to a total of 132KB.



1 void l o op r e g s s c an ( s t r u c t loop ∗ loop , . . . ) {
2 . . .
3 l a s t s e t = ( rtx ∗) x c a l l o c ( regs−>num, s i z e o f (

r tx ) ) ;
4 /∗ Scan the loop , r e co rd ing r e g i s t e r usage ∗/
5 f o r ( each i n s t r u c t i o n in loop ){
6 . . .
7 i f (GET CODE (PATTERN ( insn ) ) == SET | | . . . )
8 count one s e t ( . . . , l a s t s e t , . . . ) ;
9 . . .

10 i f ( end o f ba s i c block )
11 memset ( l a s t s e t , 0 , regs−>num∗ s i z e o f ( r tx ) ) ;
12 }
13 . . .
14 }

Listing 1: Dead writes in gcc due to an inappropriate
data structure.

2. On lines 5-12: iterates through each instruction be-
longing to the incoming argument loop.

3. On lines 7-8: If insn matches a pattern, calls
count_one_set() which updates last_set with the
last instruction that set a virtual register.

4. On lines 10-11: if the basic block ends, memset() is
called to reset the entire 132KB last_set array for
reuse in the next basic block of loop.

The program spends a lot of time zero initializing the
array last_set, most of which is already zero. Dead-
Spy detected dead writes in memset() with its caller as
loop_regs_scan(). The root cause for the high amount of
deadness is that the basic blocks are typically short and the
number of registers used in a block is small; gcc allocated a
maximum size array without considering this common case.
Clearly, a dense array is a poor data structure choice to rep-
resent this sparse register set. We gathered some statistics
on the usage pattern of last_set using the c-typeck.i in-
put and found that the median use was only 2 unique slots
with a maximum of 34 slots set between episodes of mem-

set()s. Furthermore, the median of total number of writes
to non-unique slots of last_set was 2 with a maximum of
63 between two episodes of memset()s. We found that just
22 non-unique slots were accessed on 99.6% of occasions. As
a quick fix, we maintained a side array which recorded the
first 22 non-unique indices accessed. If the side array does
not overflow, we can simply zero at most those 22 indices of
last_set instead of calling memset() on the entire 132KB
array. In rare cases when the side array overflows, we can
fall back to resetting the entire last_set array.

A poor choice of data-structures has manifested itself as
dead writes. Better permanent fixes for the aforementioned
problem include

• using a sparse representation for the register set, such
as splay trees, or

• using a composite representation for the register set
that switches from a short sparse vector, a scalable
sparse set representation such as a splay tree, and the
full dense set representation.

In the latter case, a competitive algorithm could switch be-
tween representations based on the number of elements in
the set and the pattern of accesses.

1 void c s e l i b i n i t ( ) {
2 . . .
3 c s e l i b n r e g s = max reg num () ;
4 // i n i t i a l i z e s r e g va l u e s with ze ro s
5 VARRAY ELT LIST INIT( reg va lue s , c s e l i b n r e g s ,

. . . ) ;
6 . . .
7 c l e a r t a b l e (1 ) ;
8 }
9

10 void c l e a r t a b l e ( i n t c l e a r a l l ){
11 // s e t s a l l r e g va l u e s to z e ro s
12 f o r ( i = 0 ; i < c s e l i b n r e g s ; i++)
13 REG VALUES ( i ) = 0 ;
14 . . .
15 }

Listing 2: Dead reinitialization in gcc.

Program Workload %Fast
%Reduction in resource
L1 L2 Ops Cyc

4
0
3
.g
c
c

166.i 8.5 10.8 -7.4 14.4 8.7
200.i 3.5 6.2 -0.3 3.3 3.1
c-typeck.i 28.1 29.0 31.2 29.9 24.7
cp-decl.i 15.6 14.9 -2.3 24.0 16.8
expr.i 18.4 14.3 12.7 23.5 18.0
expr2.i 18.7 10.6 11.8 24.3 17.4
g23.i 10.9 9.0 10.7 15.9 10.4
s04.i 22.8 19.2 24.1 23.2 22.2
scilab.i 1.9 3.6 0.0 0.7 1.4
average 14.3 13.1 8.9 17.7 13.7

4
5
6
.

h
m
m
e
r retro.hmm 15.1 2.3 1.2 0.5 15.5

nph3.hmm 16.2 -4.1 -2.3 0.7 16.4
average 15.7 -0.9 -0.6 0.6 15.9

b
z
ip
2
-1
.0
.6

chicken.jpg 0.8 0.0 0.0 1.0 0.2
liberty.jpg 0.7 0.0 0.0 0.7 0.5
input.program 14.2 0.5 0.0 10.3 13.9
text.html 3.5 0.0 0.0 2.1 4.7
input.source 10.5 0.0 -0.8 7.9 9.7
input.combined 13.2 0.0 -0.7 9.5 12.5
average 7.2 0.1 -0.3 5.2 6.9

Chombo common.input 6.6 8.2 20.3 2.4 6.0

Table 3: Performance improvements.

Another dead write context was found in the cselib_init()
function shown in Listing 2. Looking at the macro VAR-

RAY_ELT_LIST_INIT revealed that it was allocating and zero
initializing the array reg_values. Then, without any fur-
ther reads from the array, the call to clear_table(1) was
again resetting all elements of reg_values to zeros. The
dead write symptom highlights losses due to the use of a
generic, heavyweight API on a hot path where slim APIs are
needed. We fixed this by simply calling a specialized version
of clear_table() that did not initialize reg_values.

We identified and fixed two more top dead contexts in
403.gcc, both related to repeated zero initialization of a
dense data structure where the usage pattern was sparse.
In general, finding the root causes of performance issues
was straightforward once the dead and killing contexts were
presented. Optimizing the top four pairs of dead contexts
resulted in improving gcc’s running time by 28% for the
c-typeck.i input. The average speedup across all inputs
was 14.3%. Table 3 shows the performance improvements
in terms of percentage speedup (%Fast column), reduction
in L1 data-cache misses (L1 column), L2 data-cache misses
(L2 column), operations completed (Ops column), and pro-
cessor cycle counts (Cyc column) for each of the input files
of gcc compared to the baseline. The performance improve-
ments come from both reduced cache miss rates and reduced



1 i c [ k ] = mpp[ k ] + tpmi [ k ] ;
2 i f ( ( sc = ip [ k ] + t p i i [ k ] ) > i c [ k ] )
3 i c [ k ] = sc ;

Listing 3: Dead writes in 403.hmmer.

1 i n t icTmp = mpp[ k ] + tpmi [ k ] ;
2 i f ( ( sc = ip [ k ] + t p i i [ k ] ) > icTmp)
3 i c [ k ] = sc ;
4 e l s e
5 i c [ k ] = icTmp ;

Listing 4: Avoiding dead writes in 403.hmmer.

operation counts. Occasionally, there are slightly more L2
misses (represented by negative numbers) which are offset
by improvements in other areas. We ran the modified gcc

on a version of the SPEC’89 fpppp code, which we con-
verted from Fortran to C code for our experiments. This
benchmark is marked by very long basic blocks and stresses
register usage. This stresses the code segments we modified.
Despite being a pathological case, our modified gcc showed
a 2% speedup when compiling fpppp.

5.2 Case study 456.hmmer
456.hmmer benchmark is a computationally intensive pro-
gram. It uses profile hidden markov models of multiple se-
quence alignments, which are used in computational biology
to search for patterns in DNA sequences.

It was surprising to see that 456.hmmer had only 0.3% dead-
ness in the unoptimized case, whereas it had 30% deadness
in the optimized case for the GNU compiler (see Table 1).
In fact, the absolute number of dead writes increased by
54 times from the unoptimized to the highest optimized
code for the nph3.hmm workload. Intel and PGI compilers
also showed disproportionate rise in deadness for optimized
cases.

Listing 3 shows the code snippet where DeadSpy identified
high-frequency dead writes for the default (-O2) optimized
code. This code appears in a two-level nested loop, and
DeadSpy reported that the write in line 3 overwrote the
write in line 1. In the unoptimized code, the two writes to
ic[k] one each on line 1 and line 3 are separated by a
read in the conditional expression on line 2, thus making
them non dead. In the optimized code, the value of ic[k]

computed on line 1 is held in a register, which is reused
during the comparison on line 2; however, the write to
memory on line 1 is not eliminated, since the compiler can-
not guarantee that the arrays ip, tpii and ic do not alias
each other. Thus in the optimized code, if line 3 executes,
it kills the previous write to ic[k] on line 1.

On inspecting the surrounding code, we inferred that the
three pointers always point to different regions of memory
and never alias each other, thus making them valid candi-
dates for declaring as restrict pointers in C language. How-
ever, we found that the gcc 4.1.2 compiler does not fully
respect the restrict keyword. Hence we hand optimized
the code as shown in Listing 4. The optimization improved
the running time by more than 15% on average. Table 3
shows the reduction in other resources.

1 Bool mainGtU ( UInt32 i1 , UInt32 i2 , UChar∗
block , . . . ) {

2 Int32 k ; UChar c1 , c2 ; UInt16 s1 , s2 ;
3 /∗ 1 ∗/
4 c1 = block [ i 1 ] ; c2 = block [ i 2 ] ;
5 i f ( c1 != c2 ) re turn ( c1 > c2 ) ;
6 /∗ 2 ∗/
7 i 1++; i 2++; c1 = block [ i 1 ] ; c2 = block [ i 2 ] ;
8 i f ( c1 != c2 ) re turn ( c1 > c2 ) ;
9 /∗ 3 ∗/

10 i 1++; i 2++; c1 = block [ i 1 ] ; c2 = block [ i 2 ] ;
11 i f ( c1 != c2 ) re turn ( c1 > c2 ) ;
12 . . . 12 such checks . . .
13 . . . r e s t o f the func t i on . . .
14 }

Listing 5: Dead writes in bzip2 at mainGtU().

1 l e a l (%r11 ,%rcx ) , %r8d #%r8d conta in s i 1
2 l e a l 1(%r8 ) , %ebx #compute ( i 1+1) in %ebx
3 l e a l 2(%r8 ) , %r9d #compute ( i 1+2) in %r9d
4 movq %rbx , 360(% rsp ) #s p i l l ( i 1+1) to stack
5 movq %r9 , 352(% rsp ) #s p i l l ( i 1+2) to stack
6 #. . . ( i 1+3) to ( i 1 +11) are computed and s p i l l e d

. . .
7 #. . . f i r s t check o f i f ( c1 != c2 )
8 cmpb %al , (%r15 ,%rdx ) #i f ( c1 != c2 )
9 . . .

10 #. . . second check o f i f ( c1 != c2 )
11 cmpb %al , (%r15 ,%rdx ) #i f ( c1 != c2 )
12 . . .

Listing 6: Hoisting and spilling in bzip2.

This pattern of deadness repeated several times in the same
function. Intel 11.1 compiler at its default optimization
level honors the restrict keyword, hence we used it for
comparison. We observed that the enclosing function had
13 non-aliased pointers. Declaring these 13 pointers as re-

strict improved the running time by more than 40% on av-
erage (L1 misses, L2 misses, instructions executed, and cycle
count reduced respectively by 34%, 47%, 45%, and 40%).
The Intel compiler performed dramatically better because
of efficient SIMD vectorization via SSE instructions once
the pointers were guaranteed to not alias each other. On
disabling vectorization we observed 16% speedup; neverthe-
less DeadSpy pinpointed optimization limiting code regions,
indicating opportunities for performance improvement.

5.3 Case study bzip2-1.0.6
bzip2 is a widely used compression tool. For our exper-
iments on bzip2, we used the most recent publicly avail-
able version 1.0.6 with the same workload files as SPEC
CPU2006.3

DeadSpy reported frequent dead writes in the inlined
function mainGtU() shown in Listing 5. In this function,
12 conditions are successive checked each of which ac-
cesses the array elements block[i1]· · · block[i1+11] and
block[i2]· · · block[i2+11]. The function returns if any
one of the checks fail. Corresponding x86 assembly in List-
ing 6 shows that gcc 4.1.2 hoists the computation of in-
dices (i1+1)· · · (i1+11) ahead of the first conditional on
line 8. Lines 2 and 3 in Listing 6 show sample instruc-

3We did not use 401.bzip2 from SPEC CPU2006 since in-
lining is disabled in that version, presumably for code porta-
bility reasons. Enabling inlining on 401.bzip2 will produce
the same issue as discussed here.



1 /∗ value unknown at compile time ∗/
2 extern i n t gDisab leAggress iveSched ;
3 Bool mainGtU ( . . . ) {
4 . . .
5 switch ( gDisab leAggress iveSched ){
6 case 1 : // always taken
7 c1 = block [ i 1 ] ; c2 = block [ i 2 ] ;
8 i f ( c1 != c2 ) re turn ( c1 > c2 ) ;
9 case 2 : // Fa l l through

10 i 1++; i 2++; c1 = block [ i 1 ] ; c2 = block [ i 2 ] ;
11 i f ( c1 != c2 ) re turn ( c1 > c2 ) ;
12 case 3 : // Fa l l through
13 i 1++; i 2++; c1 = block [ i 1 ] ; c2 = block [ i 2 ] ;
14 i f ( c1 != c2 ) re turn ( c1 > c2 ) ;
15 . . . 12 such checks . . .
16 } // end switch
17 . . . r e s t o f the func t i on . . .
18 }

Listing 7: bzip2 modified to eliminate dead writes
arising due to hoisting and spilling.

tions computing (i1+1) and (i1+2). On the register starved
x86 architecture, the precomputed values could not be kept
in registers and hence they are all spilled. Lines 4 and 5

in Listing 6 show sample spill code for (i1+1) and (i1+2).
The compute and spill pattern repeats unconditionally 12
times before the first conditional test. During execution of
the mainGtU() function, based on the data present in block,
often the code fails one of the early conditional tests. In this
case, all of the pre-computed values and spills are unused.
DeadSpy detects that these spill slots are written repeat-
edly and unread. Since mainGtU() happens to be at the
heart of bzip2’s compute kernel, the effect of hoisting in-
dex computations into the hot code region has a negative
impact on performance. This exposes the lack of coopera-
tion between the instruction scheduling and register alloca-
tion phases of gcc, which results in poor generated code.

To suppress gcc’s over-aggressive scheduling and register
spilling, we overlaid a switch statement over the control
flow—a technique analogous to Duff’s device [10]. Listing 7
shows restructured code where the value of gDisableAg-

gressiveSched is always 1 at runtime making the case 1

arm of the switch statement to be the always taken branch.

Table 3 shows the improvements obtained using our
workaround. bzip2 shows an average speedup of 7.2% with
the maximum of 14.2% for the input.program workload.
While the cache misses remained almost the same before and
after the fix, the operations performed and the cycle counts
reduced by a proportion commensurate with the observed
performance gains. This is justifiable since the code changes
eliminated dead writes to on-stack temporaries which are
typically cached. Execution time was improved by avoiding
the unnecessary index computation and spilling.

5.4 Case study Chombo’s amrGodunov3d
We ran DeadSpy on amrGodunov3d, a standard benchmark
program that uses Chombo [3], which is a framework for
solving partial differential equations in parallel using block-
structured, adaptively refined grids. For detecting node-
level inefficiency, we ran amrGodunov3d on a single node4

and detected 34% deadness.

4We used Intel Xeon E5530 processor and Intel compiler
tools version 12.0.0.

1 Wgdnv( i , j , k , 0 ) = x
2 i f ( spout . l e . ( 0 . 0 d0 ) ) then
3 Wgdnv( i , j , k , 0 ) = y
4 end i f
5 i f ( sp in . gt . ( 0 . 0 d0 ) ) then
6 Wgdnv( i , j , k , 0 )= z
7 end i f

Listing 8: Dead writes in a Chombo Riemann solver.

1 i f ( sp in . gt . ( 0 . 0 d0 ) ) then
2 Wgdnv( i , j , k , 0 )= z
3 e l s e i f ( spout . l e . ( 0 . 0 d0 ) ) then
4 Wgdnv( i , j , k , 0 ) = y
5 e l s e
6 Wgdnv( i , j , k , 0 ) = x
7 end i f

Listing 9: Avoiding dead writes in Riemann solver.

The Chombo framework lacks design for performance; it is
a hybrid code which has a C++ driver with computational
kernel written in Fortran. We discuss two high frequency
dead write scenarios where developer did not pay enough
attention to performance while designing the framework.

First, the code snippet shown in Listing 8 appears in a 3-
level nested loop of the computationally intensive Riemann

solver kernel which works on a 4D array of 8 byte real

numbers. DeadSpy reported that the write in line 1 was
killed by the write in line 3 as well as the write in line 6;
and the write in line 3 was killed by the write in line 6.
To fix the problem, we applied a trivial code restructuring
by using else if nesting as shown in Listing 9.

Second, the code snippet shown in Listing 10 appears on
a hot path with 2-level nested loop. The call to construct
FArrayBox objects — WTempMinus and WTempPlus, on lines

2, 3 respectively, zero initialize a 4D-box data structure
member in FArrayBox. The call to the copy() member
function on lines 6,7 fully overwrites the previously ini-
tialized 4D-box data structures with new values. Similarly,
4D-box AdWdx constructed and zero initialized in line 4 is
fully overwritten inside the function quasilinearUpdate()

called from line 8. These dead writes together contribute
to a deadness of 20% in the program. The dead writes re-
sult from using a non specialized constructor. We remedied
the problem by overloading the constructor with a special-
ized leaner version which did not initialize the 4D box inside
FArrayBox.

In Chombo, the dead writes due to initialization followed by
the overwrite pattern was pervasive. In fact, we observed
this pattern to be pervasive in SPEC CPU2006 benchmarks,
we omit the details for brevity. By using slimmer versions
of constructors in five more similar contexts, we were able
to improve Chombo’s running time by 6.6%. Table 3 shows
reductions in cache misses and total instructions as well.

6. RELATED WORK
Several compiler optimizations focus on reducing avoidable
operations. In some way, every execution speed related op-
timization tries to reduce operation count and/or memory
accesses. An exhaustive review of compiler optimizations is
beyond the scope of this paper. We highlight some prior art



1 // Temporary p r im i t i v e v a r i a b l e s
2 FArrayBox WTempMinus(WMinus [ d i r 1 ] . box ( ) , . . . ) ;
3 FArrayBox WTempPlus(WPlus [ d i r 1 ] . box ( ) , . . . ) ;
4 FArrayBox AdWdx(WPlus [ d i r 1 ] . box ( ) , . . . ) ;
5 // Copy data f o r in p lace mod i f i c a t i on
6 WTempMinus . copy (WMinus [ d i r 1 ] ) ;
7 WTempPlus . copy (WPlus [ d i r 1 ] ) ;
8 m gdnvPhysics−>quas i l inearUpdate (AdWdx , . . . ) ;

Listing 10: Chombo dead writes in C++ constructors.

related to our work.

Butts et al. [6] propose a hardware-based approach to detect
useless operations, and speculatively eliminate instructions
from future executions by maintaining a history of instruc-
tions’ uselessness. In SPEC CPU2000 integer benchmarks,
they found on average 8.85% useless operations, and their
technique shows an average speedup of 3.6%. Their work
focuses on identifying and eliminating useless computations
only; useless memory operations are never eliminated since
mis-prediction can lead to the violation of memory consis-
tency. Our approach is orthogonal to this, we do not track
CPU bound computations, instead we track reads and writes
only. The authors do not mention if they can provide any ac-
tionable feedback on the locations of useless computations,
whereas DeadSpy provides full context to take informed
action.

Archambault [4] discusses an inter-procedural data-flow
analysis technique to eliminate dead writes. In their patent,
they suggest to merge liveness information for global vari-
ables from basic blocks to create a set of live on exit (LOE)
data structure for procedures. They traverse the program
call graph in depth first order, propagating LOE through
function calls and returns. However, they do not discuss
the effectiveness of their technique. Being a static analysis
technique, we suspect it has limitations when dealing with
aggregate types, dynamic loading and aliasing. In contrast,
DeadSpy, which uses a dynamic technique, cannot distin-
guish between dead for this program input and live for some
other input.

Gupta et al. [13] have proposed “predication-based sinking”
— a cost-benefit based algorithm to move partially dead
code from hot paths to infrequently executed regions. With
profiling information, this technique can eliminate the intra-
procedural dead write presented in the Chombo case study.

The shadow memory technique, presented in our implemen-
tation, is used in several well known tools such as Eraser [25]
for data race detection, TaintCheck [24] for taint analysis,
and Memcheck [28] for dangerous memory use detection.
Nethercote et al. [23] present techniques for efficiently shad-
owing every byte of memory. Like their implementation, our
shadow memory implementation also optimizes for common
cases.

7. CONCLUSIONS
This paper presents DeadSpy — a tool to detect dead writes
in a program. Using DeadSpy, we showed that several
commonly used programs have surprisingly large fractions
of dead writes, with an average of more than 20% in the
SPEC CPU2006 integer benchmarks, with a maximum of

76% for 403.gcc using a particular input. Deadness occurs
due to various factors such as poor choice of data structures,
lack of design for performance, and ineffective compiler opti-
mizations. Use of appropriate data-structures, light-weight
abstractions, and improved cooperation between phases of
compiler optimizations can boost performance significantly.
Simple code restructuring to eliminate dead writes improved
performance of gcc, hmmer and bzip on average by 14.3%,
15.7%, and 7.2% respectively.

The pervasiveness of dead writes suggests a new opportunity
for performance tuning. We recommend investigating and
eliminating avoidable memory operations as an important
step in performance tuning to identify opportunities for code
restructuring. DeadSpy’s ability to detect and pinpoint
sources of inefficiencies makes it a domain expert’s com-
panion tool for performance enhancement. While DeadSpy
has high runtime overhead, executing programs with small
representative workloads will help uncover regions of ineffi-
ciencies quickly. In our future work, we would like reduce
DeadSpy’s overhead by avoiding unnecessary instrumenta-
tion using binary analysis.
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